RNA Interference Targeting Snail Inhibits the Transforming Growth Factor β2-Induced Epithelial-Mesenchymal Transition in Human Lens Epithelial Cells

نویسندگان

  • Ping Li
  • Jiaona Jing
  • Jianyan Hu
  • Tiejun Li
  • Yuncheng Sun
  • Huaijin Guan
چکیده

Epithelial-msenchymal transition (EMT) contributes to posterior capsule opacification (PCO) type of cataract. Transcription factors Snail is a key trigger of EMT activated by transforming growth factor β (TGF β ). This study was done to investigate the effect of Snail targeting siRNA on TGF β 2-induced EMT in human lens epithelial cells. TGF β 2 treatment of cultured human epithelial cell line (HLEB3) upregulated the expression of Snail and the EMT relevant molecules such as vimentin and α -SMA but downregulated the expression of keratin and E-cadherin. After the stimulation of TGF β 2, the HLEB3 cells became fibroblast-like in morphology, and the junctions of cell-cell disappeared. TGF β 2 treatment also enhanced migration ability of HLEB3 cells. TGF β 2-induced Snail expression and EMT were significantly inhibited by Snail siRNA. By analyzing the response characteristics of HLEB3 in TGF β 2-induced EMT model with/without Snail-specific siRNA, we concluded that Snail is an element in the EMT of HLEB3 cells induced by TGF β 2. Snail siRNA targeting can block the induced EMT and therefore has the potential to suppress the development of PCO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vitamin D regulating TGF-β induced epithelial-mesenchymal transition

BACKGROUND Subepithelial fibrosis is a characteristic hallmark of airway remodeling in asthma. A critical regulator of fibrosis, transforming growth factor β (TGF-β), can induce airway remodeling in epithelial cells through induction of epithelial-mesenchymal transition (EMT). Vitamin D has immunomodulatory functions, however, its effect on controlling subepithelial fibrosis is not known. MET...

متن کامل

Inhibition of Pirfenidone on TGF-beta2 Induced Proliferation, Migration and Epithlial-Mesenchymal Transition of Human Lens Epithelial Cells Line SRA01/04

BACKGROUND Posterior capsular opacification (PCO) is a common complication of cataract surgery. Transforming growth factor-β2 (TGF-β2) plays important roles in the development of PCO. The existing pharmacological treatments are not satisfactory and can have toxic side effects. METHODOLOGIES/PRINCIPAL FINDINGS We evaluated the effect of pirfenidone on proliferation, migration and epithlial-mes...

متن کامل

Long noncoding RNA expression profile in HLE B-3 cells during TGF-β2-induced epithelial-mesenchymal transition

BACKGROUND Recent evidence has shown that long noncoding RNAs (lncRNAs) are involved in the process of epithelial-mesenchymal transition (EMT). However, little research has focused on the expression profile of lncRNAs during EMT in human lens epithelial cells (LECs) and their functions have not yet been described. METHODS Dysregulated lncRNAs and mRNAs in normal human lens epithelial B-3(HLE ...

متن کامل

Effects of transforming growth factor β2 and connective tissue growth factor on induction of epithelial mesenchymal transition and extracellular matrix synthesis in human lens epithelial cells.

AIM To investigate the effects of transforming growth factor β2 (TGF-β2) and connective tissue growth factor (CTGF) on transdifferentiation of human lens epithelial cells (HLECs) cultured in vitro and synthesis of extracellular matrix (ECM). METHODS HLECs were treated with TGF-β2 (0, 0.5, 1.0, 5, 10µg/L) and CTGF (0, 15, 30, 60, 100µg/L) for different times (0, 24, 48, 72h) in vitro and the e...

متن کامل

TGF-β2 induces epithelial-mesenchymal transition in cultured human lens epithelial cells through activation of the PI3K/Akt/mTOR signaling pathway

The present study aimed to investigate whether the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway is involved in the transforming growth factor β2 (TGF-β2)-induced epithelial-mesenchymal transition (EMT) in human lens epithelial (HLE) cells. HLEB-3 cells were cultured and stimulated with 10 ng/ml TGF-β2 for 24 h. Western blotti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013